Броуновское движение

В 1827 году Роберт Броун наблюдал под микроскопом и впоследствии описал хаотическое движение цветочной пыльцы, плававшей в воде.

Эйнштейн, на основе молекулярной теории, разработал статистико-математическую модель подобного движения, причём на основании его модели можно было, помимо прочего, с хорошей точностью оценить размер молекул и их количество в единице объёма.

Одновременно к аналогичным выводам пришёл Смолуховский, чья статья была опубликована на несколько месяцев позже, чем Эйнштейна.

Свои работы по статистической механике, под названием «Новое определение размеров молекул», Эйнштейн представил в Политехникум в качестве диссертации и в том же 1905 году получил звание доктора философии (эквивалент кандидата естественных наук) по физике.

В следующем году Эйнштейн развил свою теорию в новой статье «К теории броуновского движения», и в дальнейшем неоднократно возвращался к этой теме.

Вскоре (1908) измерения Перрена полностью подтвердили адекватность модели Эйнштейна, что стало первым экспериментальным доказательством молекулярно-кинетической теории, подвергавшейся в те годы активным атакам со стороны позитивистов.

Макс Борн писал (1949): «Я думаю, что эти исследования Эйнштейна больше, чем все другие работы, убеждают физиков в реальности атомов и молекул, в справедливости теории теплоты и фундаментальной роли вероятности в законах природы».

Работы Эйнштейна по статистической физике цитируются даже чаще, чем его работы по теории относительности. Выведенная им формула для коэффициента диффузии и его связи с дисперсией координат оказалась применимой в самом общем классе задач: марковские процессы диффузии, электродинамика и т. п.

Позднее, в статье «К квантовой теории излучения» (1917) Эйнштейн, исходя из статистических соображений, впервые предположил существование нового вида излучения, происходящего под воздействием внешнего электромагнитного поля («индуцированное излучение»).

В начале 1950-х годов был предложен способ усиления света и радиоволн, основанный на использовании индуцированного излучения, а в последующие годы оно легло в основу теории лазеров.